
International Journal of Global 
Optimization and Its Application 
Vol. 2, No. 4, December 2023, pp.200-208 
© 2023 SRN Intellectual Resources 

 
 
 

e-ISSN: 2948-4030 
DOI: 10.56225/ijgoia.v2i4.239 

 

 

International Journal of Global Optimization and Its Application  

Original Article 

Investigating the Growth of Bacteria using Double 
Sigmoid Model with Reparameterization 
Masithoh Yessi Rochayani 1,*, Dahlia Gladiola Rurina Menufandu 2 and Rahmila Dapa 1 

1 Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, 50275 Jawa 
Tengah, Indonesia; rahmiladapa@gmail.com (R.D.) 

2 Department of Statistics, Faculty of Natural Science and Mathematics, Universitas Brawijaya, 65145 
Jawa Timur, Indonesia; menufandu.dahlia@gmail.com (D.G.R.M.) 

* Correspondence: yessirochayani@lecturer.undip.ac.id (M.Y.R.) 
 
Citations: Rochayani, M.Y, Menufandu, D.G.R & Dapa, R., (2023). Investigating the Growth of Bacteria using 
Double Sigmoid Model with Reparameterization. International Journal of Global Optimization and Its Application, 
2(4), 200-208. 
 

Received: 18 September 2023 Accepted: 5 December 2023 Published: 31 December 2023 

Abstract: The growth of an organism can be modeled using a growth curve. However, bacteria's growth 
pattern differs from other organisms. Bacterial growth is divided into four phases: lag, logarithmic, 
stationary, and death. The experts re-parameterized the growth curve to match the growth phase of the 
bacteria. Bacterial growth patterns generally do not show a single sigmoid pattern but form two curves. 
Therefore, the double sigmoid model is more suitable. This study modeled the growth of the Pseudomonas 
putida bacteria by observing the optical density of the medium. Model parameters are estimated using the 
Non-Linear Least Square (NLS) method with the Gauss-Newton algorithm. The modeling results show that 
the double sigmoid model fits the growth curve of Pseudomonas putida better than the single sigmoid model. 
The Double Logistic model outperforms all models with the highest adjusted R2 and the smallest RMSE, 
AIC, and BIC values.  
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1. Introduction 
Growth is a process of increasing size, volume, mass, height, or other sizes, which can be expressed 

quantitatively and is irreversible (cannot change back to a previous condition or state). A growth curve is a 
graph that describes how a phenomenon grows over time. Growth curves are often used to describe poultry 
weight or plant height. In addition, the growth curve is also used to describe population growth or the 
development of disease outbreaks over time. In the 19th to 20th centuries, many scientists developed growth 
models including the Gompertz model developed by Gompertz in 1825, Logistics developed by Verhulst in 
1838, Morgan-Mercer-Flodin (MMF) in 1910-1913, Brody in 1945, Weibull 1951, Von Bertalanffy 1957, 
Schnute 1981, Stannard 1985, and MCDill-Amateis 1992 (Panik, 2014). In various studies, more researchers 
use these growth models to observe the growth of animals than plants (Tjørve & Tjørve, 2017). The research 
used the Gompertz and Logistics models to observe duck growth patterns (Prayogo et al., 2017). Another 
study described the growth curve of the Kacang goat's body weight using Gompertz and logistic models 
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(Wiradarya et al., 2020). Another research used Brody, Von Bertalanffy, Logistics, and Gompertz growth 
curves to describe Brazilian tropical goats' body weight (de Sousa et al., 2021). 

Besides observing animal growth patterns, growth models are also used to observe microorganism 
growth patterns. In prokaryotic organisms such as bacteria, growth is an increase in cell volume and the 
number of cells. The growth of bacterial cells usually follows a certain growth pattern in the form of a 
sigmoid growth curve. Zwietering et al. (1990) modeled the growth of the bacterium Lactobacillus 
plantarum using a modified Logistic, Gompertz, Richard, Stannard, and Schnute models. The results of his 
research show that the modification of the Gompertz model gives the best results. Pla et al. (2015) observed 
the growth of Bacillus cereus, Listeria monocytogenes, and Escherichia coli using a three-phase linear 
model, Gompertz, Logistic, Richard, and Baranyi. The results showed that all models showed good results 
when observing bacterial growth using optical density (Pla et al., 2015). 

The growth pattern of bacteria is different from that of animals or plants. Bacterial growth is divided 
into four phases (Madigan et al., 2021). The first phase is the lag phase, where bacteria adapt to the media 
to slow bacterial growth. Then, the bacteria go through a logarithmic phase. In the logarithmic phase, the 
bacteria divide continuously until they reach their maximum amount. The stationary phase occurs after the 
logarithmic phase, which is the right phase for harvesting. In this phase, the number of bacteria that die 
equals the number of bacteria that divide. So, there is no increase in the number of bacteria. The final stage 
is the death phase, in which the bacteria die but no longer any bacteria are still dividing. So, in this phase, 
the number of bacteria decreases. Experts reparameterized growth models to fit the phenomenon of the 
bacterial growth phase. Zwietering et al. (1990) reparameterized the Logistics model, Gompertz, Richard, 
Stanard, and Schnute. Vázquez et al. (2012) reparameterized the Weibull and von Bertalanffy model. The 
modifications of these models have been used by Longhi et al. (2017), Njalam'mano & Chirwa (2019), and 
Pla et al. (2015). The original Logistic and Gompertz models are shown in Equations (1) and Equation (2). 

𝑦𝑦𝑡𝑡 =
𝑎𝑎

1 + exp�−𝑏𝑏(𝑡𝑡 − ℎ)�
 (1) 

𝑦𝑦𝑡𝑡 = 𝑎𝑎 exp�exp�−𝑏𝑏(𝑡𝑡 − ℎ)�� (2) 

where 𝑦𝑦𝑡𝑡 is the optical density at time 𝑡𝑡, 𝑡𝑡 is incubation time (hours), 𝑎𝑎 is the maximum optical density, 
ℎ is the time at which the absolute growth rate is maximum (hours), and 𝑏𝑏 is the relative growth rate that 
is determined at the time (per hour). Equations (3) and Equation (4) state the Logistic and Gompertz model 
modifications. 

𝑦𝑦𝑡𝑡 =
𝐴𝐴

1 + exp �4𝜇𝜇
𝐴𝐴 (𝜆𝜆 − 𝑡𝑡) + 2�

 (3) 

𝑦𝑦𝑡𝑡 = 𝐴𝐴 exp �−exp �
𝜇𝜇𝜇𝜇
𝐴𝐴

(𝜆𝜆 − 𝑡𝑡) + 1�� (4) 

where 𝑦𝑦𝑡𝑡  is the optical density at time 𝑡𝑡, 𝑡𝑡 is the incubation time (hours), 𝐴𝐴 is the maximum optical 
density, 𝜇𝜇 is the maximum growth rate (per hour); 𝜆𝜆 is lag time (hours) (Njalam'mano & Chirwa, 2019). 

The modified parameters of the Logistic growth model are explained as follows. The maximum optical 
density (𝐴𝐴)  is the same as 𝑎𝑎 in Equation (1) and (2), the maximum growth rate (𝜇𝜇) is derived by 
Equation (5), and lag time (λ) is derived by Equation (6). 

𝜇𝜇 =
𝑏𝑏𝑏𝑏
4

 (5) 

𝜆𝜆 = ℎ −
2
𝑏𝑏

 (6) 

Where ℎ is the time at which the absolute growth rate is maximum, 𝑏𝑏 is the relative growth rate, c is 
the asymptotic amount of growth, and 𝜇𝜇 = 2.718 (Njalam'mano & Chirwa, 2019). Meanwhile, the parameter 
of the Gompertz model is modified as follows. The 𝐴𝐴 is the same as 𝑎𝑎, while the 𝜇𝜇 and 𝜆𝜆 are derived by 
Equation (7) and Equation (8) respectively. 

𝜇𝜇 =
𝑏𝑏𝑏𝑏
𝜇𝜇

 (7) 

𝜆𝜆 = ℎ −
1
𝑏𝑏

 (8) 
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Vázquez et al. (2012) stated that in some cases, animal growth patterns do not show a single sigmoid 
pattern but tend to form two sigmoid curves (double sigmoid). This double sigmoid pattern can be expressed 
as the sum of the two sigmoid curves. The Double Logistics and Double Gompertz models can be seen in 
Equation (9) and Equation (10), respectively. 

𝑦𝑦𝑡𝑡 =
𝐴𝐴1

1 + exp �4𝜇𝜇1
𝐴𝐴1

(𝜆𝜆1 − 𝑡𝑡) + 2�
+

(𝐴𝐴2 − 𝐴𝐴1)

1 + exp � 4𝜇𝜇2
(𝐴𝐴2 − 𝐴𝐴1) (𝜆𝜆2 − 𝑡𝑡) + 2�

 (9) 

𝑦𝑦𝑡𝑡 = 𝐴𝐴1  exp �− exp �
𝜇𝜇1𝜇𝜇
𝐴𝐴1

(𝜆𝜆1 − 𝑡𝑡) + 1�� + (𝐴𝐴2 − 𝐴𝐴1) exp �− exp �
𝜇𝜇2𝜇𝜇

(𝐴𝐴2 − 𝐴𝐴1)
(𝜆𝜆2 − 𝑡𝑡) + 1�� (10) 

where 𝑦𝑦𝑡𝑡  is the optical density at time 𝑡𝑡, 𝑡𝑡 is the incubation time (hours), 𝐴𝐴1 is the maximum optical 
density in the first sigmoid, 𝜆𝜆1 is the lag phase in the first sigmoid (hours), 𝜇𝜇1 is the maximum growth rate 
in the first sigmoid (per hour), 𝐴𝐴2 is the maximum optical density, 𝜆𝜆2 is the lag phase in the second sigmoid 
(hours), 𝜇𝜇2 is the maximum growth rate in the second sigmoid (per hour). This study aims to model the 
growth pattern of Pseudomonas putida and compare the single sigmoid curve (Logistic and Gompertz) and 
the double sigmoid curves (Double Logistic and Double Gompertz). The selection of the best model is done 
based on four evaluation metrics, including 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 , RMSE, AIC, and BIC. 

2. Materials and Methods 
The growth model is one of the intrinsically non-linear regression models, a non-linear model that 

cannot be transformed into a linear form. The parameters of this model are obtained by the non-linear least 
square (NLS) method. The idea of this method is the same as in ordinary least squares (OLS), which is to 
minimize the sum of the residual squares. However, because the function used is non-linear, an iterative 
method is needed to estimate the parameters. Assume that given the model 𝑀𝑀  with parameter 𝜃𝜃 =
(𝜃𝜃1, … 𝜃𝜃𝑚𝑚) where 𝑚𝑚 stated the number of parameters. The estimated value of the model at time-𝑖𝑖 or 𝑡𝑡𝑖𝑖 is 
expressed by 𝑀𝑀𝑖𝑖(𝜽𝜽). The results of measurements at time 𝑡𝑡𝑖𝑖 are expressed by Equation (11). 

𝑦𝑦𝑖𝑖 =  𝑀𝑀𝑖𝑖(𝜽𝜽) + 𝑟𝑟𝑖𝑖(𝜽𝜽)        (11) 
where  𝑖𝑖 = 1, 2, … , 𝑛𝑛 and 𝑟𝑟𝑖𝑖(𝜽𝜽) is the residual at time 𝑡𝑡𝑖𝑖. The function of the residual can be expressed 
by Equation (12). 

𝑟𝑟𝑖𝑖(𝜽𝜽) = 𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑖𝑖(𝜽𝜽) (12) 
The Residual Sum of Square (RSS) is expressed by Equation (13). 

𝑓𝑓(𝜽𝜽) =
1
2
��𝑟𝑟𝑖𝑖(𝜽𝜽)�

2
𝑛𝑛

𝑖𝑖=1

=
1
2
�|𝑟𝑟(𝜽𝜽)|�

2
=

1
2
𝑟𝑟(𝜽𝜽)𝑇𝑇𝑟𝑟(𝜽𝜽) 

 
(13) 

where and 𝑟𝑟(𝜽𝜽) = �𝑟𝑟1(𝜽𝜽), … , 𝑟𝑟𝑛𝑛(𝜽𝜽)�
𝑇𝑇

. 
Minimizing the RSS means the model parameters close to the observed data are obtained. The gradient 

(a vector of first-order partial derivatives) of RSS is stated by Equation (14). 

𝐺𝐺(𝜽𝜽) = ∇𝑟𝑟(𝜽𝜽)𝑟𝑟(𝜽𝜽) = 𝐽𝐽(𝜽𝜽)𝑇𝑇𝑟𝑟(𝜽𝜽) (14) 
where 𝐽𝐽(𝜽𝜽) is the Jacobian matrix of the residual function 𝑟𝑟(𝜽𝜽) and is stated by Equation (15). 

𝐽𝐽(𝜽𝜽) = ∇𝑟𝑟(𝜽𝜽)𝑇𝑇 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑟𝑟1(𝜽𝜽)
𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕𝑟𝑟1(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑟𝑟𝑚𝑚(𝜽𝜽)
𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕𝑟𝑟𝑚𝑚(𝜽𝜽)
𝜕𝜕𝜃𝜃𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

 (15) 

Therefore, the Gradient 𝐺𝐺(𝜽𝜽) in Equation (14) can be expressed as Equation (16). Meanwhile, the 
Hessian 𝐻𝐻(𝜽𝜽) matrix (a matrix of second-order partial derivatives of a function) is stated by Equation (17) 
(Siregar et al., 2018). 

𝐺𝐺(𝜃𝜃) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑟𝑟1(𝜃𝜃)
𝜕𝜕𝜃𝜃1

⋯
𝜕𝜕𝑟𝑟𝑚𝑚(𝜃𝜃)
𝜕𝜕𝜃𝜃1

⋮ ⋱ ⋮
𝜕𝜕𝑟𝑟1(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑛𝑛

⋯
𝜕𝜕𝑟𝑟𝑚𝑚(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑛𝑛 ⎦

⎥
⎥
⎥
⎤

�
𝑟𝑟1(𝜃𝜃)
⋮

𝑟𝑟𝑚𝑚(𝜃𝜃)
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡�

𝜕𝜕𝑟𝑟𝑖𝑖(𝜃𝜃)
𝜕𝜕𝜃𝜃1

 𝑟𝑟𝑖𝑖(𝜃𝜃)
𝑛𝑛

𝑖𝑖=1
⋮

�
𝜕𝜕𝑟𝑟𝑖𝑖(𝜃𝜃)
𝜕𝜕𝜃𝜃𝑛𝑛

 𝑟𝑟𝑖𝑖(𝜃𝜃)
𝑛𝑛

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (16) 
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𝐻𝐻(𝜽𝜽) = �∇𝑟𝑟𝑖𝑖(𝜽𝜽)∇𝑟𝑟𝑖𝑖(𝜽𝜽)𝑇𝑇
𝑛𝑛

𝑖𝑖=1

+ �𝑟𝑟𝑖𝑖(𝜽𝜽)∇2𝑟𝑟𝑖𝑖(𝜽𝜽)
𝑛𝑛

𝑖𝑖=1

 

= 𝐽𝐽(𝜽𝜽)𝑇𝑇𝐽𝐽(𝜽𝜽) + �𝑟𝑟𝑖𝑖(𝜽𝜽)∇2𝑟𝑟𝑖𝑖(𝜽𝜽)
𝑛𝑛

𝑖𝑖=1

 
(17) 

By expressing the objective function 𝑓𝑓(𝜽𝜽) as the second-order Taylor series expansion, the quadratic 
model is obtained as Equation (18).  

𝑞𝑞(𝜽𝜽) =
1
2
𝑟𝑟(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘) + 𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘)(𝜽𝜽 − 𝜽𝜽𝑘𝑘) +

1
2
�𝑆𝑆(𝜽𝜽𝑘𝑘) + 𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)�(𝜽𝜽 − 𝜽𝜽𝑘𝑘)2  (18) 

where 𝑆𝑆(𝜽𝜽𝑘𝑘) = 𝑟𝑟(𝜽𝜽)∇2𝑟𝑟(𝜽𝜽) (Lai et al., 2017). 
Deriving Equation (18) with respect to 𝜽𝜽 and equating to zero, then Equation (19) is obtained. 

𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘) + �𝑆𝑆(𝜽𝜽𝑘𝑘) + 𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)�(𝜽𝜽 − 𝜽𝜽𝑘𝑘) = 0 (19) 
Rearrange (19), we obtain Equation (20). 

�𝑆𝑆(𝜽𝜽𝑘𝑘) + 𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)�(𝜽𝜽− 𝜽𝜽𝑘𝑘) = −𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘) (20) 
After some algebra manipulations, by letting 𝜽𝜽 = 𝜽𝜽𝑘𝑘+1, then Equation (20) can be rewritten by Equation 
(21). 

𝜽𝜽𝑘𝑘+1 = 𝜽𝜽𝑘𝑘 − �𝑆𝑆(𝜽𝜽𝑘𝑘) + 𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)�
−1
𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘) (21) 

Since the term 𝑆𝑆(𝑥𝑥) is very small, then it can be ignored (Chong & Zak, 2013). Therefore, the Gauss-
Newton recursion equation is obtained in Equation (22). 

𝜽𝜽𝑘𝑘+1 = 𝜽𝜽𝑘𝑘 + [𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)]−1[−𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘)] (22) 
 
From the description above, the Gauss-Newton algorithm can be briefly described as follows. 

1. Input the initial value of parameter 𝜽𝜽0 , set the tolerance 𝜀𝜀 > 0 and let the iteration index 𝑘𝑘 = 0. 
2. Calculate the gradient 𝐺𝐺(𝜽𝜽𝑘𝑘) using Equation (16), then compute the norm of the gradient ‖𝐺𝐺(𝜽𝜽𝑘𝑘)‖. If 

‖𝐺𝐺(𝜽𝜽𝑘𝑘)‖ < 𝜀𝜀, stop. 
3. Calculate [𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝐽𝐽(𝜽𝜽𝑘𝑘)]−1[−𝐽𝐽(𝜽𝜽𝑘𝑘)𝑇𝑇𝑟𝑟(𝜽𝜽𝑘𝑘)] and update the parameters using Equation (22) and repeat 

Step 2 until convergence. 

3. Results and Discussion 
3.1. Modeling Pseudomonas putida Growth 

The data used in this study were obtained from research by Puteri (2015). The growth of Pseudomonas 
putida bacteria was observed by measuring the optical density of the growth medium at a wavelength of 
450 nm. The optical density of a medium is the logarithmic ratio of the intensity of incident light (𝐼𝐼0) to 
the intensity of the light transmitted through the medium (𝐼𝐼0) (Zhang & Hoshino, 2019). In the first 24 
hours, the optical density was measured every hour, while in the second 24 hours, the optical density was 
measured every 2 hours, resulting in 36 observations. In the stationary phase, the number of dividing bacteria 
is almost equal to the number of dead bacteria. The start of the stationary phase is reached at 34 hours of 
incubation time. Therefore, the harvesting of bacteria can be done after an incubation time of 34 hours 
(Puteri, 2015).  

Table 1. Parameter estimates of the Logistic model 

Model Parameter Estimate P-value 

Logistic 
𝐴𝐴 0.6270 0.000 
𝜇𝜇 0.0569 0.000 
𝜆𝜆 13.6966 0.000 

Gompertz 
𝐴𝐴 0.6330 0.000 
𝜇𝜇 0.0606 0.000 
𝜆𝜆 13.8235 0.000 

The results of the parameter estimate of the Logistic and Gompertz single model are summarized in 
Table 1. At the same time, the parameter estimates of Double Logistic and Double Gompertz are presented 
in Table 2. All the parameters are generally significant, with a p-value of zero.  
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Table 2. Parameter estimates of the Double Logistic model 

Model Parameter Estimate P-value 

Double Logistic 

𝐴𝐴1 0.3271 0.000 
𝜇𝜇1 0.0141 0.000 
𝜆𝜆1 5.7417 0.000 
𝐴𝐴2 0.6326 0.000 
𝜇𝜇2 0.1832 0.000 
𝜆𝜆2 19.3262 0.000 

Double Gompertz 

𝐴𝐴1 0.2936 0.000 
𝜇𝜇1 0.0107 0.000 
𝜆𝜆1 2.7300 0.000 
𝐴𝐴2 0.6447 0.000 
𝜇𝜇2 0.1497 0.000 
𝜆𝜆2 18.8938 0.000 

Figure 1 presents the plot of the data. The growth of Pseudomonas putida is characterized by an increase 
in the density of the medium as the incubation time increases. The growth curve describes the phases in the 
life cycle of Pseudomonas putida, including the lag, logarithmic, and stationary phases.  

 
Figure 1. The Plot of Incubation Time and Optical Density of Pseudomonas putida 

Figure 1 shows that the lag phase occurs at an incubation time of 0 to 3 hours. A significant increase in 
population characterizes the logarithmic phase. The logarithmic phase occurs at an incubation time of 3 to 
34 hours. Figure 2 shows the single sigmoid model of Logistics and Gompertz. On the basis of Figure 2, 
neither model can perfectly fit Pseudomonas putida's growth. Look again at the growth pattern of 
Pseudomonas putida in Figure 1. Figure 1 shows that the growth of the Pseudomonas putida bacteria forms 
a double sigmoid curve. 

For this reason, a more appropriate approach for this growth pattern is a double sigmoid curve. The 
observational data form the first sigmoid curve at 0 to 14 hours of incubation and the second sigmoid curve 
at 14 to 48 hours. Therefore, the growth pattern of Pseudomonas putida can be approximated by Double 
Logistic and Double Gompertz growth curves. Figure 3 shows the Double Logistics and Double Gompertz 
models. For the double sigmoid model, the parameters interpreted are: 𝜆𝜆1 states the lag phase length, 𝐴𝐴2 
states the maximum optical density and 𝜇𝜇2 states the maximum growth rate. The lag phase is estimated to 
occur at 0 to 5.7 hours by the Double Logistic model and 0 to 2.7 hours by the Double Gompertz model. At 
the beginning of incubation (lag phase), the density has not increased significantly because Pseudomonas 
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putida has just adapted to the new medium so that the cells have not reproduced (Madigan et al., 2021). The 
Double Logistics and Double Gompertz models estimate the maximum optical density of Pseudomonas 
putida to be 0.6326 and 0.6447, respectively. The maximum growth rates estimated by the Logistics and 
Gompertz models are 0.1832 and 0.1497, respectively. 

 
Figure 2. Logistic and Gompertz growth curve of Pseudomonas putida 

 
Figure 3. Double Logistic and Double Gompertz growth curve of Pseudomonas putida 

 
3.2. Model Evaluation 

The models were evaluated using four evaluation metrics, including the adjusted coefficient of 
determination �𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 �, root mean square error (RMSE), Akaike's information criterion (AIC), and Bayesian 
information criterion (BIC). 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is a correction for the coefficient of determination (𝑅𝑅2)  where the 
calculation of 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  involves the number of parameters. 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is calculated using Equation (23). 
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𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1− (1− 𝑅𝑅2) �
𝑛𝑛 − 1

𝑛𝑛 − 𝑚𝑚 − 1
� (23) 

where 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

, (24) 

𝑛𝑛 is the number of observations, 𝑚𝑚 is the number of the parameters, ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  is the residual 

sum of squared (RSS), ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1  is the total sum of squared (TSS), 𝑦𝑦𝑖𝑖 is the observed values at the 𝑖𝑖-

th time, 𝑦𝑦� is the predicted values at the 𝑖𝑖-th time, and 𝑦𝑦� is the mean of the predicted values at the 𝑖𝑖-th time. 
The range of values for the 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is between 0 and 1, and the closer 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is to 1, the more accurate the 
model is (Anderson, 2014). RMSE is calculated using Equation (25). 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (25) 

where ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  is RSS. The best model is the one with the lowest RMSE. The formula of AIC is 

presented by Equation (26).  

𝐴𝐴𝐼𝐼𝐴𝐴 = 𝑛𝑛 log�
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛
� + 2𝑚𝑚 (26) 

where 𝑚𝑚 is the number of parameters in the model (Burnham & Anderson, 2004). The AIC ranges of 
(−∞, +∞). A smaller AIC value indicates a better model. The BIC is calculated by Equation (27), 

𝐵𝐵𝐼𝐼𝐴𝐴 = 𝑛𝑛 log�
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛
�+ 𝑚𝑚 log𝑛𝑛 (27) 

where 𝑛𝑛 is the number of observations, and 𝑚𝑚 is the number of parameters in the model (Priestley, 1981). 
A model with a lower BIC provides a better fit. 

Table 3 presents the model evaluation. Based on Table 3, the double sigmoid models provide a higher 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  compared to the single sigmoid models. It means that the double sigmoid models better fit 
Pseudomonas putida's growth curve. The Double Logistic model gives a 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  of 0.998, which is the highest 
𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  among all models. On the basis of RMSE, AIC, and BIC, the double sigmoid models give smaller 
values than the single sigmoid models, meaning the double sigmoid models fit better. The Double Logistic 
outperforms all the models with the smallest value of RMSE, AIC, and BIC 

Table 3. Result of Model Evaluation 

Model 𝐑𝐑𝐚𝐚𝐚𝐚𝐚𝐚𝟐𝟐  RMSE AIC BIC 
Logistic 0.978 0.037 -230.56 -225.80 
Gompertz 0.967 0.046 -215.48 -210.73 
Double Logistic 0.998 0.010 -316.86 -307.36 
Double Gompertz 0.997 0.014 -297.80 -288.29 

4. Conclusions 
In conclusion, this study has successfully proposed the double sigmoid models with reparameterization 

to model the growth pattern of bacteria. The results show that the double sigmoid models fit the growth 
curve of Pseudomonas putida better than the single sigmoid model based on the 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 , RMSE, AIC, and 
BIC. The Double Logistic model outperforms all the models with the highest value of 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  and the smallest 
value of RMSE, AIC, and BIC. For further research, these double sigmoid models can be applied to model 
the growth of other bacteria and microorganisms. Other growth models, such as Brody, Richard, and Von 
Bartalenfy, can be used instead of Logistics and Gompertz models. 
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