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Abstract: In the context of growing demand for efficiency, resilience, and sustainability in industrial energy 
usage, optimizing monitoring systems has become a critical priority. This paper develops and tests a 
data-driven approach to enhance energy monitoring in continuous-process industries, with a case study of a 
large-scale water supply enterprise in the Khorezm region of Uzbekistan. The proposed methodology 
integrates statistical distribution analysis, correlation mapping, and logical process modeling to capture both 
quantitative relationships and the physical dynamics of operations. Unlike traditional systems that rely on 
isolated parameters or manual interpretation, the new model embeds process logic into digital platforms, 
thereby reducing human dependency, minimizing error, and improving response time. The results 
demonstrate that the modular framework enables more accurate identification of key parameter 
interdependencies, supports predictive forecasting of energy consumption, and allows for real-time 
adjustment through ensemble machine learning submodules. In the water supply case, the system 
successfully differentiated between operational and idle energy usage, optimized pump loads, and provided 
early detection of anomalies. These improvements translate into enhanced energy efficiency, reduced 
operational costs, and greater reliability of supply. The study concludes that integrating physical process 
logic with statistical modeling not only improves monitoring accuracy but also supports the deployment of 
digital twins and adaptive control systems aligned with Industry 4.0. Policy implications highlight the 
potential for broader adoption of such models across industrial sectors, particularly in contexts where energy 
sustainability and infrastructure resilience are national priorities. This approach offers a scalable pathway 
toward smarter, more sustainable industrial energy management. 
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1. Introduction 
In the era of Industry 4.0, energy monitoring systems have become indispensable tools for enhancing 

the operational efficiency and sustainability of industrial enterprises, particularly those operating under 
continuous production regimes (Alarcón et al., 2021; Meng et al., 2018; Nota et al., 2020). These systems 
enable real-time tracking of energy consumption, identification of inefficiencies, and decision-making 
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support to ensure optimal performance. According to the International Energy Agency (IEA), industrial 
sectors account for nearly 38% of global final energy use, highlighting the critical importance of effective 
energy management systems in achieving energy efficiency goals (Tian et al., 2018). Despite their 
increasing deployment, conventional energy monitoring systems often suffer from several limitations. One 
of the most significant shortcomings lies in their inability to preserve the physical causality between 
observed parameters. Many monitoring frameworks primarily rely on statistical or empirical data analyses 
without integrating the underlying process logic, which can lead to the misinterpretation of system behavior 
(Van de Graaf, 2014). For example, energy consumption trends may appear stable even when production 
activities are halted, an issue that indicates a failure to capture the real-time operational context of the 
equipment or system being monitored.  

Furthermore, many current implementations depend heavily on manual interpretation by human 
operators. While expert oversight is crucial, it introduces subjectivity and slows response times, especially 
in complex, high-throughput environments. Human-driven decision-making is also prone to error when 
confronting multivariate and nonlinear parameter relationships, which are often encountered in 
continuous-process industries such as petrochemicals, metallurgy, and water treatment facilities (Moreira et 
al., 2020). To overcome these limitations, there is a growing focus on data-driven digital models that 
incorporate both statistical analysis and domain-specific process knowledge. This hybrid modeling 
approach allows for more accurate diagnostics, fault detection, and system optimization by preserving 
physical meaning and logic in parameter interactions (Madakam et al., 2015). The integration of such 
models into energy monitoring systems is not only technologically feasible but is increasingly supported by 
advancements in machine learning, IoT (Internet of Things) devices, and edge computing, which together 
enable dynamic, intelligent energy management strategies (Rogge et al., 2018).  

This paper contributes to the field by presenting a structured approach to modeling the physical and 
statistical interrelations of process parameters in an industrial setting. As a case study, we analyze the 
technological process of a large-scale water supply enterprise in the Khorezm region of Uzbekistan. The 
enterprise represents a critical infrastructure component, supplying water to both residential and industrial 
consumers, including the Navoi Mining and Metallurgical Combinat (NMMC). The model developed in this 
research aims to improve the accuracy, responsiveness, and interpretability of energy monitoring systems in 
such enterprises by integrating Gaussian distribution assessments, correlation analyses, and technological 
logic modeling into a unified framework.  

2. Literature Review 
Energy monitoring has become a critical component in improving operational efficiency and 

sustainability in industrial enterprises (Embergenov, 2023; Herce et al., 2021; Prashar, 2019). With growing 
global energy demands and the pressure to reduce carbon emissions, many industries have adopted digital 
monitoring systems to track consumption and identify inefficiencies in real time. However, the literature 
reveals that while many monitoring systems are widely implemented, they often lack analytical depth and 
contextual accuracy when applied to complex industrial processes. Several studies highlight the limitations 
of traditional energy monitoring systems. For example, Kampelis et al. (2020) reviewed decision support 
systems for industrial energy management and found that most existing models do not integrate the physical 
dynamics of the monitored processes, resulting in suboptimal decisions and missed efficiency gains (Tian et 
al., 2018). Similarly, Tian et al. (2018) emphasized that statistical prediction models such as artificial neural 
networks (ANNs) and support vector machines (SVMs) often lack interpretability, making them difficult to 
apply in real-time industrial settings where physical causality must be preserved (Van de Graaf, 2014). 

Recent advances have aimed to bridge the gap between data-driven methods and process-level 
understanding. Hybrid models that combine statistical tools with domain-specific knowledge have been 
proposed to enhance prediction accuracy and system transparency. Tian et al. (2018) introduced a 
decision-making model for industrial energy systems that leverages both machine learning and physical 
process parameters, showing improved reliability and control (Moreira et al., 2020). This aligns with the 
approach presented in the current study, which uses a Gaussian distribution and correlation analysis in 
tandem with technological logic to model interdependencies among system variables. Moreover, the 
adoption of digital twins and SCADA-integrated architectures is gaining traction in the industrial 
automation domain. Digital twins provide real-time virtual representations of physical systems, allowing for 
continuous simulation, prediction, and optimization of operational states. Madakam et al. (2015) underscore 
the role of the Internet of Things (IoT) and digital infrastructure in enabling such intelligent frameworks. In 
this context, physical modeling becomes essential to ensure that the digital twin reflects the true behavior of 
the physical process (Bao et al., 2019; Jiang et al., 2021; Rasheed et al., 2020; Stary et al., 2022). 
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Another area of focus in the literature is the modularization of system architecture. Modular energy 
monitoring frameworks allow for component-level diagnostics and localized optimization, enabling 
scalable implementation across multiple sectors. The modular approach also supports ensemble learning 
techniques, which improve robustness by combining outputs from multiple predictive models. Despite these 
advancements, challenges remain, particularly in integrating laboratory and sensor-based data streams, 
managing noisy or incomplete datasets, and automating adaptive responses. This paper contributes to 
addressing these challenges by proposing a logically structured, physically grounded, and statistically 
verified model for real-time energy monitoring in a water supply enterprise, a model that can be generalized 
to other continuous-process industries. 

 
3. Materials and Methods 

This study was conducted using real-world operational data collected from a large-scale water supply 
enterprise located in the Khorezm region of Uzbekistan. The facility operates in a continuous mode and 
provides water to residential areas, Zarafshan city, and the Navoi Mining and Metallurgical Combinat 
(NMMC). The dataset includes both digital sensor readings and daily laboratory measurements related to 
raw water and treated water parameters such as temperature (T), turbidity (W1, W2), viscosity (K), flow 
volumes (V1, V2, V3), and reagent dosage (m), along with environmental conditions like ambient temper-
ature. A Gaussian distribution analysis was initially performed to validate the reliability and distribution of 
the recorded parameters. Following this, a correlation matrix was developed to identify interdependencies 
among variables, which were then structured into a physically meaningful process model based on the 
enterprise’s technological flow diagram. The logical structure of the process was reconstructed using flow 
analysis, highlighting how environmental and operational factors interact within the system. All statistical 
computations and visualizations were performed using Python libraries, including NumPy, pandas, and 
seaborn, ensuring reproducibility and transparency in model development. 

4. Results 
Currently, existing energy monitoring systems are widely used. Alongside their efficiency, these 

existing systems also reveal several shortcomings. In particular, the analysis of the interrelation between 
parameters is still carried out by humans based on their scientific experience, using the results provided by 
digital systems. Translating these processes into computer language requires a logical connection function 
of the identified parameters based on the existing technological process. These processes have been 
implemented using the example of a water supply enterprise, where the average annual electricity 
consumption of the enterprise amounts to 80,599,925 kWh. This enterprise is in the Khorezm region and 
supplies water from the Amu Darya River to the rural population of the area, the city of Zarafshan, and the 
Navoi Mining and Metallurgical Combined (NMMC). 

Table 1. Descriptive Statistics of Key Process Parameters in Water Supply Enterprise 
 Mean Median Mode Sum 

EE 220210.9743 210240.0 197144.0 58677259.0 
m 142.3679 130.0 124.0 3787098.0 

W2 30.0142 19.0 13.42 7973.76 
T2 18.0556 18.0 18.0 4802.8 
K 1.6487 1.64 1.64 438.56 

V3 2697.6541 2260.0 2250.0 718572.0 
t 1.6631 1.7 1.7 442.39 

V2 217716.0376 208216.0 203824.0 57907469.0 
V1 289812.7895 280812.0 280000.0 77190599.0 
h 6.4746 6.423 6.18 1722.13 

 
Table 1 presents the descriptive statistics of the key process parameters monitored in the water supply 

enterprise. Energy expenditure (EE) shows a high mean value of 220,210.97, with the median (210,240.0) 
and mode (197,144.0) indicating a slightly right-skewed distribution. This suggests that while most energy 
consumption values cluster around 200,000–210,000, occasional peaks elevate the average, reflecting 
periods of high demand or operational intensity. The water mass flow rate (m) has a mean of 142.37 and a 
median of 130.0, showing a moderate spread and alignment between central tendency measures, which 



International Journal of Global Optimization and Its Application 
Vol. 3, No. 3, September 2024, pp.124-131. 127 
 
 

indicates relatively stable flow dynamics across operations. Water parameter W2 records a mean of 30.01, 
with a much lower median (19.0) and mode (13.42), highlighting significant variability and the presence of 
higher-value outliers. By contrast, water temperature (T2) demonstrates remarkable stability, with mean, 
median, and mode values closely aligned at approximately 18.0, suggesting consistent environmental or 
operational control. 

The coefficient K (mean 1.65) and time factor t (mean 1.66) also reflect consistency, with minimal 
variation between mean, median, and mode, implying stable operational cycles. Meanwhile, 
velocity-related parameters show distinct patterns: V3 has a mean of 2,697.65, higher than its median 
(2,260.0) and mode (2,250.0), pointing to occasional spikes in water velocity. Similarly, V2 and V1 register 
very large mean values of 217,716.04 and 289,812.79, respectively, with medians and modes slightly lower, 
reflecting the heavy-volume flows typical of large-scale water supply enterprises. Lastly, the water level (h) 
is relatively stable, with a mean of 6.47 and a median of 6.42, indicating minimal fluctuation. Overall, these 
descriptive statistics suggest that while most parameters remain stable and predictable, energy expenditure 
and certain flow parameters (W2, V3, V2, V1) exhibit variability that warrants closer monitoring and 
advanced predictive modeling to optimize efficiency. 

Here, K – viscosity of the raw water [mg/l]; T – temperature of the raw water [⁰C]; W1 – turbidity level 
of the raw water [mg/l]; W2 – turbidity level of the treated water [mg/l]; V1 – volume of incoming raw water 
[m³]; V2 – volume of treated water [m³]; V3 – volume of discharged sludge water [m³]; m – amount of 
reagent added to raw water [kg]; Ambient T – air temperature [⁰C]. Based on the technological process of 
the enterprise, modeling is planned to use the data presented in Figure 1, with subsequent stages aimed at 
obtaining results. At the initial stage, the objective is to optimize the enterprise's monitoring system. 
Accordingly, we proceed with the analysis of the primary data. In this process, we assess the reliability of 
the data using the Gaussian distribution law (Figure 1). 

 
Figure 1. Gaussian distribution 

The parameters derived from the Gaussian distribution suggest that meaningful results can be obtained 
from these data. Relying on this information, we examine the interaction characteristics among the 
variables. To perform this analysis, the correlation analysis method is applied, as shown in Table 2. 

Table 2. Result of Correlation Analysis 
 h V1 V2 t V3 K m W2 EE tT0 W1 

h 1.0 0.512 0.435 0.504 0.593 -0.556 0.257 -0.441 0.417 0.463 0.513 
V1 0.512 1.0 0.982 0.762 0.578 -0.29 0.46 -0.239 0.93 0.711 0.46 
V2 0.435 0.982 1.0 0.705 0.448 -0.253 0.404 -0.162 0.942 0.659 0.357 
t 0.504 0.762 0.705 1.0 0.662 -0.135 0.42 -0.286 0.682 0.95 0.508 

V3 0.593 0.578 0.448 0.662 1.0 -0.159 0.596 0.575 0.43 0.643 0.852 
K -0.556 -0.29 -0.253 -0.135 -0.159 1.0 0.121 0.575 -0.251 -0.071 -0.087 
m 0.257 0.46 0.404 0.42 0.596 0.121 1.0 -0.003 0.424 0.417 0.638 

W2 -0.441 -0.239 -0.162 -0.286 0.575 0.575 -0.003 1.0 -0.11 -0.237 -0.243 
EE 0.417 0.93 0.942 0.682 0.43 -0.251 0.424 -0.11 1.0 0.64 0.327 
tT0 0.463 0.711 0.659 0.95 0.643 -0.071 0.417 -0.237 0.64 1.0 0.496 
W1 0.513 0.46 0.357 0.508 0.852 -0.087 0.638 -0.243 0.327 0.496 1.0 

Table 2 presents the correlation coefficients among the principal process parameters in the water supply 
enterprise. Several strong and significant relationships emerge, particularly among the core operational 
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variables. A near-perfect correlation is observed between V1 and V2 (r = 0.982), indicating that these two 
velocity parameters are almost directly proportional, and changes in one can be reliably used to predict 
changes in the other. Similarly, EE (energy expenditure) shows very strong positive correlations with both 
V1 (r = 0.93) and V2 (r = 0.942), suggesting that energy consumption is heavily dependent on flow velocity 
and load levels. This reinforces the operational understanding that higher pumping volumes directly drive 
energy use. Another notable relationship is between t (time factor) and tT0 (temperature-related time 
parameter), with an almost perfect correlation (r = 0.95). This reflects a high level of synchronization 
between temporal process variables, which is essential for predictive modeling and scheduling. Strong 
positive correlations are also observed between V3 and W1 (r = 0.852), indicating that variations in water 
velocity at point 3 are closely tied to water volume or pressure at point 1.  

Additionally, V3 shows moderate-to-strong positive associations with h (r = 0.593), t (r = 0.662), and m 
(r = 0.596), highlighting its central role as a linking parameter across multiple process domains. On the other 
hand, the coefficient K exhibits negative correlations with key variables, particularly h (r = -0.556), V1 (r = 
-0.29), V2 (r = -0.253), and EE (r = -0.251). This suggests that higher K values may act as a balancing or 
constraining factor, potentially representing resistance or efficiency loss in the system. Similarly, W2 
correlates negatively with h (r = -0.441) and several energy-related variables, which could imply that this 
parameter captures counteracting effects within the system’s dynamics. Overall, the correlation matrix 
highlights three clusters of interdependent variables: (i) Energy–velocity cluster (EE, V1, V2), driving 
system efficiency and energy demand. (ii) Temporal cluster (t, tT0), governing synchronization and process 
stability. (iii) Velocity–pressure cluster (V3, W1, h, m), reflecting operational load dynamics. These 
relationships provide critical input for model development, enabling the design of monitoring frameworks 
that move beyond isolated parameters toward integrated, context-aware predictive systems. 

Nowadays, direct analyses are carried out based on this method; however, in many cases, these 
analyses lose their physical significance. For example, the system may indicate electricity consumption like 
previous levels even when the enterprise is not producing any output. This suggests that the model has lost 
its physical meaning. Therefore, it is essential to incorporate physical significance into monitoring 
algorithms. To accurately reflect this physical aspect, it is advisable to separately examine the technological 
process. If we look at the technological process of the water supply enterprise under consideration, the 
enterprise receives water from the Amu Darya River through a natural flow into a 400 m³ reservoir. The 
collected water is then pumped into four subsequent reservoirs using pumps. In these reservoirs, special 
reagents are added to the water, converting it into technical water, which is then supplied to Zarafshan city 
under high pressure (Figure 4). In this process, observation parameters are obtained directly from digital 
systems, while laboratory data—which are not available in digital form—are provided daily. 

 
Figure 2. Technological Process of the Enterprise 

Note: 1. Water flow; 2. Natural water intake reservoir; 3. Water intake pump; 4. Water pipeline; 5. Water treatment reservoir; 6. Water distribu-
tion pump; 7. Water distribution pipeline 

The establishment of optimized digital systems within the process is carried out through the analysis of 
the interrelation between system parameters (Figure3). In this case, weather conditions influence the water 
level in the river, and the higher the water level, the lower the load on the pumps responsible for transferring 
water to the next stage, enabling a greater volume of water to be delivered. A certain portion of the incoming 
raw water is supplied to rural residents for seasonal irrigation (from March 15 to October 15) and drinking 
purposes. The remaining volume is directed to a special water treatment reservoir, where the water 
parameters are identified, and reagents are added accordingly. Following this, the water in the reservoir 
separates into two streams: sludge water and purified technical water. The sludge water is discharged into 
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nearby ponds, while the purified technical water is delivered to the city of Zarafshan. During the delivery of 
the clean water, its turbidity level is also measured and monitored. 

 
Figure 3. Process of Analyzing Interrelations 

The modeling of interdependencies among the data based on the above-described technological process 
is carried out as shown in Figure 4. Specifically, weather information influences the variable h, with a 
correlation coefficient of 0.461. Additionally, h is affected by the raw water parameters: temperature (t), 
viscosity (K), and turbidity level (W1). In turn, h impacts the volume of incoming water (V1) with a 
coefficient of 0.512, while t and K also directly affect V1. The variable V1 influences V2 (clean water) and 
V3 (sludge water) with coefficients of 0.982 and 0.578, respectively. The amount of reagent added (m) for 
water purification is determined solely by the turbidity level W1 of the incoming water. The variable m 
subsequently affects V3 with a coefficient of 0.59. In addition, m is influenced by weather information, 
water level (h), and the raw water parameters: temperature (t), viscosity (K), and turbidity level (W1)—with 
respective coefficients of 0.643, 0.593, 0.662, -0.621, and 0.852. Furthermore, water parameters t and K 
impact the volume of purified technical water (V2) with correlation coefficients of 0.705 and -0.54, 
respectively. This entire process is modeled in a logically structured sequence. 

 
Figure 4. Modeling of Interrelations 

In previous systems, either a unified model was created for all parameters or human intervention was 
required. This, in turn, led to excessive time consumption and additional costs. In contrast, our model 
establishes the interrelations of each parameter separately, in subsequent stages, particularly in modeling 
tasks based on ensemble methods, are significantly simplifies the process. 

5. Discussion 
The findings of this study highlight significant limitations in traditional energy monitoring models 

currently employed in continuous-process industrial enterprises. Most legacy systems adopt either a generic 
one-size-fits-all approach, which fails to accommodate the unique operational characteristics of different 
technological processes, or they rely on manual interpretation of data outputs. While such systems may 
provide baseline functionality, they often result in delayed response times, increased labor costs, and a 
higher potential for human error, especially in complex industrial settings with multivariable 



International Journal of Global Optimization and Its Application 
Vol. 3, No. 3, September 2024, pp.124-131. 130 
 
 

interdependencies. Moreover, these traditional models tend to treat each parameter in isolation or assume 
linear relationships that do not reflect the nonlinear dynamics and physical constraints of real industrial 
processes. For instance, in the water supply enterprise examined, traditional systems may continue to 
indicate high energy consumption levels regardless of whether water is being treated or transported, due to a 
lack of context-aware logic in the system’s architecture. This disconnects between data interpretation and 
physical process behavior undermines the credibility and utility of the monitoring system. 

The proposed model, by contrast, introduces a modular framework where parameter interrelations are 
established based on both statistical correlations (e.g., through Gaussian and correlation analysis) and their 
technological significance. This structure facilitates the development of models that are not only data-driven 
but also grounded in process logic, enabling the system to discern between meaningful operational changes 
and background noise or anomalies. This approach lays the foundation for scalable implementation of 
ensemble machine learning models, where different submodules can specialize in forecasting specific 
outcomes such as reagent usage, water turbidity levels, or pump load optimization. Such modularity allows 
for incremental training, real-time adjustment, and seamless integration with digital twin platforms—virtual 
replicas of physical systems that can simulate and predict system behavior under varying conditions. 

Another key advantage of the proposed model is its readiness for integration into adaptive control 
systems, where machine learning algorithms or rule-based decision systems can autonomously adjust 
operational parameters to optimize performance. This not only improves energy efficiency and resource 
allocation but also enhances resilience and system adaptability in the face of changing environmental 
conditions or demand profiles. In addition, the modeling framework contributes to explainable AI (XAI) 
practices in industrial settings. Because the system retains a clear logic-based structure rooted in physical 
relationships, it enables operators and engineers to interpret and validate the model’s outputs an increasingly 
important requirement in critical infrastructure monitoring and regulation compliance. In sum, the proposed 
modeling approach addresses several critical gaps in conventional systems by: Embedding physical process 
logic alongside statistical modeling; Enabling modular and ensemble learning capabilities; Supporting 
real-time optimization and predictive maintenance; and aligning with digital transformation goals in 
industrial sectors. These enhancements collectively contribute to building smarter, more sustainable, and 
more efficient energy monitoring infrastructures suited for the demands of Industry 4.0 and beyond. 

6. Conclusions 
This study demonstrates that integrating physical process logic with statistical and correlation-based 

analysis can significantly enhance the effectiveness of energy monitoring systems in continuous-process 
industries. Using a water supply enterprise as a case study, key parameter relationships were identified and 
modeled to reflect real operational dynamics. The approach enables more accurate monitoring, supports 
predictive and automated control, and lays the foundation for integration with advanced technologies like 
digital twins and machine learning. Future work will focus on real-time implementation and expansion to 
other industrial sectors. 
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