Effects of Particle Sizes on Total Catching Content and Antioxidant Activity of Musa Paradisiacal Inflorescence using Supercritical Carbon Dioxide (SFE-CO2) Extraction
DOI:
https://doi.org/10.56225/ijgoia.v3i1.346Keywords:
Musa paradisiacal inflorescence, Antioxidant activity, SFE-CO2, Catching, Particle sizesAbstract
The inflorescence of Musa paradisiacal or Banana Nipah primarily serves as a staple food crop in Malaysia. It contains various polyphenols, including catching, renowned for its excellent ant oxidative properties. Supercritical carbon dioxide (SFE-CO2) is a green technology that preserves bioactive components while facilitating extraction. This study employed SFE-CO2 to investigate the catching extraction from different size ranges of M. paradisiacal inflorescences at different extraction parameters. The plant matrices (450 - 600 µm, 600 - 850 µm, and 850 µm - 1600μm) were extracted under different temperatures (40°C and 60°C) and pressures (25MPa and 45MPa), with a constant supercritical CO2 fluid and 50% (v/v) ethanol co-solvent flowed at 4 mL/min. Data were analyzed using ANOVA in Minitab Software. The results indicated that the smallest particles (450 - 600 µm) exhibited the highest total oil extraction yield (29.40 ± 7.95%) at 60°C; 45 M Pa, while 850 µm - 1600μm particles had the least (9.54 ± 1.60%) at 40°C; 45MPa. Extraction efficacy of SFE-CO2 at 45MPa; 60°C demonstrated a comparable effect (p > 0.05) to the 10-hour Sox let extraction. Smaller plant matrices exhibited higher catching content at 40°C and 45 M Pa, particularly 81.51 ± 1.11 mg (450 - 600 µm). Increased total catching content correlated with higher DPPH radical scavenging activity. Kinetic modeling revealed that 93% to 95% of the catching extraction from the plant matrix followed a first-order kinetic model. In conclusion, the smallest plant matrix (450 - 600 µm) exhibited the highest catching yield and ant oxidative activity when extracted at 45MPa and 40°C.
References
Abbas, A., Naqvi, S. A. R., Rasool, M. H., Noureen, A., Mubarik, M. S., & Tareen, R. B. (2021). Phytochemical analysis, antioxidant and antimicrobial screening of seriphidium oliverianum plant extracts. Dose-Response, 19(1), 15–59.
Abudureheman, B., Yu, X., Fang, D., & Zhang, H. (2022). Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules, 27(3), 9–42. https://doi.org/10.3390/molecules27030942
Agu, C. M., Menkiti, M. C., Ohale, P. E., & Ugonabo, V. I. (2021). Extraction modeling, kinetics, and thermodynamics of solvent extraction of Irvingia gabonensis kernel oil, for possible industrial application. Engineering Reports, 3(4), 12–306. https://doi.org/10.1002/eng2.12306
Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput, 20(3), 84–93.
Al-Hamimi, S., Abellan Mayoral, A., Cunico, L. P., & Turner, C. (2016). Carbon Dioxide Expanded Ethanol Extraction: Solubility and Extraction Kinetics of α-Pinene and cis-Verbenol. Analytical Chemistry, 88(8), 4336–4345. https://doi.org/10.1021/acs.analchem.5b04534
Alara, O. R., & Abdurahman, N. H. (2019). Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of Food Science and Technology, 56(2), 580–588. https://doi.org/10.1007/s13197-018-3512-4
Amornlerdpison, D., Choommongkol, V., Narkprasom, K., & Yimyam, S. (2020). Bioactive Compounds and Antioxidant Properties of Banana Inflorescence in a Beverage for Maternal Breastfeeding. Applied Sciences, 11(1), 1–8. https://doi.org/10.3390/app11010343
Anggraini, T., Wilma, S., Syukri, D., & Azima, F. (2019). Total Phenolic, Anthocyanin, Catechins, DPPH Radical Scavenging Activity, and Toxicity of Lepisanthes alata (Blume) Leenh. International Journal of Food Science, 2019(1), 1–7. https://doi.org/10.1155/2019/9703176
Arun, K., Gudennavar, S. B., & Sivaram, C. (2017). Dark matter, dark energy, and alternate models: A review. Advances in Space Research, 60(1), 166–186. https://doi.org/10.1016/j.asr.2017.03.043
Atwi-Ghaddar, S., Zerwette, L., Destandau, E., & Lesellier, E. (2023). Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier. Molecules, 28(14), 54–85. https://doi.org/10.3390/molecules28145485
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 13–26. https://doi.org/10.3390/molecules27041326
Cabeza, L. F., de Gracia, A., Fernández, A. I., & Farid, M. M. (2017). Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering, 125, 799–810. https://doi.org/10.1016/j.applthermaleng.2017.07.049
Castellanos-Gallo, L., Ballinas-Casarrubias, L., Espinoza-Hicks, J. C., Hernández-Ochoa, L. R., Muñoz-Castellanos, L. N., Zermeño-Ortega, M. R., Borrego-Loya, A., & Salas, E. (2022). Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes, 10(3), 469. https://doi.org/10.3390/pr10030469
Chen, R., & Pignatello, J. J. (1997). Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds. Environmental Science & Technology, 31(8), 2399–2406. https://doi.org/10.1021/es9610646
Chuang, Y.-H., Zhang, Y., Zhang, W., Boyd, S. A., & Li, H. (2015). Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A, 1404(24), 1–9. https://doi.org/10.1016/j.chroma.2015.05.022
Cid-Ortega, S., & Monroy-Rivera, J. A. (2018). Extraction of Kaempferol and Its Glycosides Using Supercritical Fluids from Plant Sources: A Review. Food Technology and Biotechnology, 56(4), 480–493. https://doi.org/10.17113/ftb.56.04.18.5870
Cormier, P. J., Clarke, R. M., McFadden, R. M. L., & Ghandi, K. (2014). Selective Free Radical Reactions using Supercritical Carbon Dioxide. Journal of the American Chemical Society, 136(6), 2200–2203. https://doi.org/10.1021/ja408438s
Diazgranados, M., Hammond, D., Rojas, M., White, K., Mira, M. D. P., Castellanos-Castro, C., Aguilera, C. G., & Ulian, T. (2022). The Useful Plants and Fungi of Colombia (UPFC) project: Delivering botanical knowledge to support conservation and sustainable development. In Useful Plants of Colombia, ed. R. Negrao, A. Monro, C. Castellanos-Castro, and M. Diazgranados. London: Royal Botanic Gardens, Kew (pp. 21–33).
Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y., & Guo, J. (2017). Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192(1), 107–115. https://doi.org/10.1016/j.jenvman.2017.01.048
Fotsing Yannick Stéphane, F., Kezetas Jean Jules, B., El-Saber Batiha, G., Ali, I., & Ndjakou Bruno, L. (2022). Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicinal Plants (pp. 1–39). IntechOpen. https://doi.org/10.5772/intechopen.98602
Fraguela-Meissimilly, H., Bastías-Monte, J. M., Vergara, C., Ortiz-Viedma, J., Lemus-Mondaca, R., Flores, M., Toledo-Merma, P., Alcázar-Alay, S., & Gallón-Bedoya, M. (2023). New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules, 28(11), 1–32. https://doi.org/10.3390/molecules28114421
He, Q., Yao, K., Jia, D., Fan, H., Liao, X., & Shi, B. (2009). Determination of total catechins in tea extracts by HPLC and spectrophotometry. Natural Product Research, 23(1), 93–100. https://doi.org/10.1080/14786410801886682
Herrero, M., Mendiola, J. A., Cifuentes, A., & Ibáñez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019
Hu, R., & Chen, W. (2019). Global Shanghai Remade. Routledge. https://doi.org/10.4324/9780429316180
Huaman-Castilla, N. L., Martínez-Cifuentes, M., Camilo, C., Pedreschi, F., Mariotti-Celis, M., & Pérez-Correa, J. R. (2019). The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Molecules, 24(17), 31–45. https://doi.org/10.3390/molecules24173145
Imam, M. Z., & Akter, S. (2011). Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science, 1(5), 14–20.
Kapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., & Hardy, J. G. (2022). Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. International Journal of Molecular Sciences, 23(18), 1–27. https://doi.org/10.3390/ijms231810334
Karmee, S. K., Roosen, C., Kohlmann, C., Lütz, S., Greiner, L., & Leitner, W. (2009). Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media. Green Chemistry, 11(7), 1052–1055. https://doi.org/10.1039/b820606f
Kirchoff, B. K. (2017). Inflorescence and Flower Development in Musa velutina H. Wendl. & Drude (Musaceae), with a Consideration of Developmental Variability, Restricted Phyllotactic Direction, and Hand Initiation. International Journal of Plant Sciences, 178(4), 259–272. https://doi.org/10.1086/691143
Koina, I. M., Sarigiannis, Y., & Hapeshi, E. (2023). Green Extraction Techniques for the Determination of Active Ingredients in Tea: Current State, Challenges, and Future Perspectives. Separations, 10(2), 121. https://doi.org/10.3390/separations10020121
Krause, S., Reuter, F. S., Ehrling, S., Bon, V., Senkovska, I., Kaskel, S., & Brunner, E. (2020). Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by In Situ 129 Xe NMR Spectroscopy. Chemistry of Materials, 32(11), 4641–4650. https://doi.org/10.1021/acs.chemmater.0c01059
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., … Zheng, B. (2018). Global Carbon Budget 2018. Earth System Science Data, 10(4), 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
Loganayaki, N., Rajendrakumaran, D., & Manian, S. (2010). Antioxidant capacity and phenolic content of different solvent extracts from banana (Musa paradisiaca) and mustai (Rivea hypocrateriformis). Food Science and Biotechnology, 19(5), 1251–1258. https://doi.org/10.1007/s10068-010-0179-7
Ma, J., Srzednicki, G., & Arcot, J. (2017). Effects of Drying on Stability of Nutrients in Banana Pseudostem in Species Musa balbisiana and Musa acuminata. Journal of Food Processing and Preservation, 41(1), e12865. https://doi.org/10.1111/jfpp.12865
Moore, L. M. (1996). The basic practice of statistics. 38(4), 404–405.
Muzolf-Panek, M., Gliszczyńska-Świgło, A., de Haan, L., Aarts, J. M. M. J. G., Szymusiak, H., Vervoort, J. M., Tyrakowska, B., & Rietjens, I. M. C. M. (2008). Role of Catechin Quinones in the Induction of EpRE-Mediated Gene Expression. Chemical Research in Toxicology, 21(12), 2352–2360. https://doi.org/10.1021/tx8001498
Nabil, B., Ouaabou, R., Ouhammou, M., Saadouni, L., & Mahrouz, M. (2020). Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica). Journal of Food Science and Technology, 57(3), 943–954. https://doi.org/10.1007/s13197-019-04127-4
Namal Senanayake, S. P. J. (2013). Green tea extract: Chemistry, antioxidant properties and food applications – A review. Journal of Functional Foods, 5(4), 1529–1541. https://doi.org/10.1016/j.jff.2013.08.011
Ntalikwa, J. W. (2021). Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield. Journal of Renewable Energy, 2021(1), 1–8. https://doi.org/10.1155/2021/9221168
Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313. https://doi.org/10.1016/j.ifset.2008.12.004
Pourmortazavi, S. M., & Hajimirsadeghi, S. S. (2007). Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1–2), 2–24. https://doi.org/10.1016/j.chroma.2007.06.021
Punín Crespo, M. O., & Lage Yusty, M. A. (2005). Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere, 59(10), 1407–1413. https://doi.org/10.1016/j.chemosphere.2004.12.025
Reyes-Garcés, N., Gionfriddo, E., Gómez-Ríos, G. A., Alam, M. N., Boyacı, E., Bojko, B., Singh, V., Grandy, J., & Pawliszyn, J. (2018). Advances in Solid Phase Microextraction and Perspective on Future Directions. Analytical Chemistry, 90(1), 302–360. https://doi.org/10.1021/acs.analchem.7b04502
Rizkiyah, D. N., Putra, N. R., Idham, Z., Aziz, A. H. A., Che Yunus, M. A., Veza, I., Irianto, Chinedu Mamah, S., & Qomariyah, L. (2023). Recovery of Anthocyanins from Hibiscus sabdariffa L. Using a Combination of Supercritical Carbon Dioxide Extraction and Subcritical Water Extraction. Processes, 11(3), 1–20. https://doi.org/10.3390/pr11030751
Rodríguez De Luna, S. L., Ramírez-Garza, R. E., & Serna Saldívar, S. O. (2020). Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. The Scientific World Journal, 2020(1), 1–38. https://doi.org/10.1155/2020/6792069
Schenker, S., Handschin, S., Frey, B., Perren, R., & Escher, F. (2000). Pore Structure of Coffee Beans Affected by Roasting Conditions. Journal of Food Science, 65(3), 452–457. https://doi.org/10.1111/j.1365-2621.2000.tb16026.x
Shi, L., Zhao, W., Yang, Z., Subbiah, V., & Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112–81129. https://doi.org/10.1007/s11356-022-23337-6
Sodeifian, G., & Usefi, M. M. B. (2023). Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. ChemBioEng Reviews, 10(2), 133–166. https://doi.org/10.1002/cben.202200020
Sovová, H., Nobre, B., & Palavra, A. (2016). Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption. Materials, 9(6), 1–19. https://doi.org/10.3390/ma9060423
Subramaniam, B. (2017). Sustainable Processes With Supercritical Fluids. In Encyclopedia of Sustainable Technologies (pp. 653–662). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10252-0
Sun, M.-F., Jiang, C.-L., Kong, Y.-S., Luo, J.-L., Yin, P., & Guo, G.-Y. (2022). Recent Advances in Analytical Methods for Determination of Polyphenols in Tea: A Comprehensive Review. Foods, 11(10), 14–25. https://doi.org/10.3390/foods11101425
Wang, L., Santos, E., Schenk, D., & Rabago-Smith, M. (2014). Kinetics and Mechanistic Studies on the Reaction between Cytochrome c and Tea Catechins. Antioxidants, 3(3), 559–568. https://doi.org/10.3390/antiox3030559
Yaneva, Z., & Ivanova, D. (2020). Catechins within the Biopolymer Matrix—Design Concepts and Bioactivity Prospects. Antioxidants, 9(12), 11–80. https://doi.org/10.3390/antiox9121180
Yeop, A., Sandanasam, J., Pan, S. F., Abdulla, S., Yusoff, M. M., & Gimbun, J. (2017). The effect of particle size and solvent type on the gallic acid yield obtained from Labisia pumila by ultrasonic extraction. MATEC Web of Conferences, 111(2), 1–5. https://doi.org/10.1051/matecconf/201711102008
Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K., Kang, K. W., Choi, Y. J., & Hwang, D. H. (2006). Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (−)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochemical Pharmacology, 72(7), 850–859. https://doi.org/10.1016/j.bcp.2006.06.021
Zeppetzauer, F., Süss, R., Nadányi, R., Putz, R. F., Lisý, A., Paulik, C., Šurina, I., Strižincová, P., Huemer, K., & Kamm, B. (2023). Environmentally Friendly Extraction from Picea Abies Bark as an Approach to Accessing Valuable Antioxidants in Biorefineries. Processes, 11(7), 21–45. https://doi.org/10.3390/pr11072145
Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(1), 1–26. https://doi.org/10.1186/s13020-018-0177-x
Zygler, A., Słomińska, M., & Namieśnik, J. (2012). Soxhlet extraction and new developments such as soxtec. Elsevier.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted to copy and redistribute the material in any medium or format, remix, transform, and build upon the material for any purpose, even commercially.
This work is licensed under a Creative Commons Attribution 4.0 International License.