Effects of Particle Sizes on Total Catching Content and Antioxidant Activity of Musa Paradisiacal Inflorescence using Supercritical Carbon Dioxide (SFE-CO2) Extraction

https://doi.org/10.56225/ijgoia.v3i1.346

Authors

  • Chong Xiu Qing Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
  • Chong Gun Hean Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
  • Noor Hadzuin Nik Hadzir Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

Keywords:

Musa paradisiacal inflorescence, Antioxidant activity, SFE-CO2, Catching, Particle sizes

Abstract

The inflorescence of Musa paradisiacal or Banana Nipah primarily serves as a staple food crop in Malaysia. It contains various polyphenols, including catching, renowned for its excellent ant oxidative properties. Supercritical carbon dioxide (SFE-CO2) is a green technology that preserves bioactive components while facilitating extraction. This study employed SFE-CO2 to investigate the catching extraction from different size ranges of M. paradisiacal inflorescences at different extraction parameters. The plant matrices (450 - 600 µm, 600 - 850 µm, and 850 µm - 1600μm) were extracted under different temperatures (40°C and 60°C) and pressures (25MPa and 45MPa), with a constant supercritical CO2 fluid and 50% (v/v) ethanol co-solvent flowed at 4 mL/min. Data were analyzed using ANOVA in Minitab Software. The results indicated that the smallest particles (450 - 600 µm) exhibited the highest total oil extraction yield (29.40 ± 7.95%) at 60°C; 45 M Pa, while 850 µm - 1600μm particles had the least (9.54 ± 1.60%) at 40°C; 45MPa. Extraction efficacy of SFE-CO2 at 45MPa; 60°C demonstrated a comparable effect (p > 0.05) to the 10-hour Sox let extraction. Smaller plant matrices exhibited higher catching content at 40°C and 45 M Pa, particularly 81.51 ± 1.11 mg (450 - 600 µm). Increased total catching content correlated with higher DPPH radical scavenging activity. Kinetic modeling revealed that 93% to 95% of the catching extraction from the plant matrix followed a first-order kinetic model. In conclusion, the smallest plant matrix (450 - 600 µm) exhibited the highest catching yield and ant oxidative activity when extracted at 45MPa and 40°C.

Downloads

Download data is not yet available.

References

Abbas, A., Naqvi, S. A. R., Rasool, M. H., Noureen, A., Mubarik, M. S., & Tareen, R. B. (2021). Phytochemical analysis, antioxidant and antimicrobial screening of seriphidium oliverianum plant extracts. Dose-Response, 19(1), 15–59.

Abudureheman, B., Yu, X., Fang, D., & Zhang, H. (2022). Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules, 27(3), 9–42. https://doi.org/10.3390/molecules27030942

Agu, C. M., Menkiti, M. C., Ohale, P. E., & Ugonabo, V. I. (2021). Extraction modeling, kinetics, and thermodynamics of solvent extraction of Irvingia gabonensis kernel oil, for possible industrial application. Engineering Reports, 3(4), 12–306. https://doi.org/10.1002/eng2.12306

Akossou, A. Y. J., & Palm, R. (2013). Impact of data structure on the estimators R-square and adjusted R-square in linear regression. Int. J. Math. Comput, 20(3), 84–93.

Al-Hamimi, S., Abellan Mayoral, A., Cunico, L. P., & Turner, C. (2016). Carbon Dioxide Expanded Ethanol Extraction: Solubility and Extraction Kinetics of α-Pinene and cis-Verbenol. Analytical Chemistry, 88(8), 4336–4345. https://doi.org/10.1021/acs.analchem.5b04534

Alara, O. R., & Abdurahman, N. H. (2019). Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of Food Science and Technology, 56(2), 580–588. https://doi.org/10.1007/s13197-018-3512-4

Amornlerdpison, D., Choommongkol, V., Narkprasom, K., & Yimyam, S. (2020). Bioactive Compounds and Antioxidant Properties of Banana Inflorescence in a Beverage for Maternal Breastfeeding. Applied Sciences, 11(1), 1–8. https://doi.org/10.3390/app11010343

Anggraini, T., Wilma, S., Syukri, D., & Azima, F. (2019). Total Phenolic, Anthocyanin, Catechins, DPPH Radical Scavenging Activity, and Toxicity of Lepisanthes alata (Blume) Leenh. International Journal of Food Science, 2019(1), 1–7. https://doi.org/10.1155/2019/9703176

Arun, K., Gudennavar, S. B., & Sivaram, C. (2017). Dark matter, dark energy, and alternate models: A review. Advances in Space Research, 60(1), 166–186. https://doi.org/10.1016/j.asr.2017.03.043

Atwi-Ghaddar, S., Zerwette, L., Destandau, E., & Lesellier, E. (2023). Supercritical Fluid Extraction (SFE) of Polar Compounds from Camellia sinensis Leaves: Use of Ethanol/Water as a Green Polarity Modifier. Molecules, 28(14), 54–85. https://doi.org/10.3390/molecules28145485

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4), 13–26. https://doi.org/10.3390/molecules27041326

Cabeza, L. F., de Gracia, A., Fernández, A. I., & Farid, M. M. (2017). Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering, 125, 799–810. https://doi.org/10.1016/j.applthermaleng.2017.07.049

Castellanos-Gallo, L., Ballinas-Casarrubias, L., Espinoza-Hicks, J. C., Hernández-Ochoa, L. R., Muñoz-Castellanos, L. N., Zermeño-Ortega, M. R., Borrego-Loya, A., & Salas, E. (2022). Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes, 10(3), 469. https://doi.org/10.3390/pr10030469

Chen, R., & Pignatello, J. J. (1997). Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds. Environmental Science & Technology, 31(8), 2399–2406. https://doi.org/10.1021/es9610646

Chuang, Y.-H., Zhang, Y., Zhang, W., Boyd, S. A., & Li, H. (2015). Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. Journal of Chromatography A, 1404(24), 1–9. https://doi.org/10.1016/j.chroma.2015.05.022

Cid-Ortega, S., & Monroy-Rivera, J. A. (2018). Extraction of Kaempferol and Its Glycosides Using Supercritical Fluids from Plant Sources: A Review. Food Technology and Biotechnology, 56(4), 480–493. https://doi.org/10.17113/ftb.56.04.18.5870

Cormier, P. J., Clarke, R. M., McFadden, R. M. L., & Ghandi, K. (2014). Selective Free Radical Reactions using Supercritical Carbon Dioxide. Journal of the American Chemical Society, 136(6), 2200–2203. https://doi.org/10.1021/ja408438s

Diazgranados, M., Hammond, D., Rojas, M., White, K., Mira, M. D. P., Castellanos-Castro, C., Aguilera, C. G., & Ulian, T. (2022). The Useful Plants and Fungi of Colombia (UPFC) project: Delivering botanical knowledge to support conservation and sustainable development. In Useful Plants of Colombia, ed. R. Negrao, A. Monro, C. Castellanos-Castro, and M. Diazgranados. London: Royal Botanic Gardens, Kew (pp. 21–33).

Fan, Y., Bai, B., Qiao, Q., Kang, P., Zhang, Y., & Guo, J. (2017). Study on eco-efficiency of industrial parks in China based on data envelopment analysis. Journal of Environmental Management, 192(1), 107–115. https://doi.org/10.1016/j.jenvman.2017.01.048

Fotsing Yannick Stéphane, F., Kezetas Jean Jules, B., El-Saber Batiha, G., Ali, I., & Ndjakou Bruno, L. (2022). Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicinal Plants (pp. 1–39). IntechOpen. https://doi.org/10.5772/intechopen.98602

Fraguela-Meissimilly, H., Bastías-Monte, J. M., Vergara, C., Ortiz-Viedma, J., Lemus-Mondaca, R., Flores, M., Toledo-Merma, P., Alcázar-Alay, S., & Gallón-Bedoya, M. (2023). New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules, 28(11), 1–32. https://doi.org/10.3390/molecules28114421

He, Q., Yao, K., Jia, D., Fan, H., Liao, X., & Shi, B. (2009). Determination of total catechins in tea extracts by HPLC and spectrophotometry. Natural Product Research, 23(1), 93–100. https://doi.org/10.1080/14786410801886682

Herrero, M., Mendiola, J. A., Cifuentes, A., & Ibáñez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019

Hu, R., & Chen, W. (2019). Global Shanghai Remade. Routledge. https://doi.org/10.4324/9780429316180

Huaman-Castilla, N. L., Martínez-Cifuentes, M., Camilo, C., Pedreschi, F., Mariotti-Celis, M., & Pérez-Correa, J. R. (2019). The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Molecules, 24(17), 31–45. https://doi.org/10.3390/molecules24173145

Imam, M. Z., & Akter, S. (2011). Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science, 1(5), 14–20.

Kapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., & Hardy, J. G. (2022). Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. International Journal of Molecular Sciences, 23(18), 1–27. https://doi.org/10.3390/ijms231810334

Karmee, S. K., Roosen, C., Kohlmann, C., Lütz, S., Greiner, L., & Leitner, W. (2009). Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media. Green Chemistry, 11(7), 1052–1055. https://doi.org/10.1039/b820606f

Kirchoff, B. K. (2017). Inflorescence and Flower Development in Musa velutina H. Wendl. & Drude (Musaceae), with a Consideration of Developmental Variability, Restricted Phyllotactic Direction, and Hand Initiation. International Journal of Plant Sciences, 178(4), 259–272. https://doi.org/10.1086/691143

Koina, I. M., Sarigiannis, Y., & Hapeshi, E. (2023). Green Extraction Techniques for the Determination of Active Ingredients in Tea: Current State, Challenges, and Future Perspectives. Separations, 10(2), 121. https://doi.org/10.3390/separations10020121

Krause, S., Reuter, F. S., Ehrling, S., Bon, V., Senkovska, I., Kaskel, S., & Brunner, E. (2020). Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by In Situ 129 Xe NMR Spectroscopy. Chemistry of Materials, 32(11), 4641–4650. https://doi.org/10.1021/acs.chemmater.0c01059

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., … Zheng, B. (2018). Global Carbon Budget 2018. Earth System Science Data, 10(4), 2141–2194. https://doi.org/10.5194/essd-10-2141-2018

Loganayaki, N., Rajendrakumaran, D., & Manian, S. (2010). Antioxidant capacity and phenolic content of different solvent extracts from banana (Musa paradisiaca) and mustai (Rivea hypocrateriformis). Food Science and Biotechnology, 19(5), 1251–1258. https://doi.org/10.1007/s10068-010-0179-7

Ma, J., Srzednicki, G., & Arcot, J. (2017). Effects of Drying on Stability of Nutrients in Banana Pseudostem in Species Musa balbisiana and Musa acuminata. Journal of Food Processing and Preservation, 41(1), e12865. https://doi.org/10.1111/jfpp.12865

Moore, L. M. (1996). The basic practice of statistics. 38(4), 404–405.

Muzolf-Panek, M., Gliszczyńska-Świgło, A., de Haan, L., Aarts, J. M. M. J. G., Szymusiak, H., Vervoort, J. M., Tyrakowska, B., & Rietjens, I. M. C. M. (2008). Role of Catechin Quinones in the Induction of EpRE-Mediated Gene Expression. Chemical Research in Toxicology, 21(12), 2352–2360. https://doi.org/10.1021/tx8001498

Nabil, B., Ouaabou, R., Ouhammou, M., Saadouni, L., & Mahrouz, M. (2020). Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica). Journal of Food Science and Technology, 57(3), 943–954. https://doi.org/10.1007/s13197-019-04127-4

Namal Senanayake, S. P. J. (2013). Green tea extract: Chemistry, antioxidant properties and food applications – A review. Journal of Functional Foods, 5(4), 1529–1541. https://doi.org/10.1016/j.jff.2013.08.011

Ntalikwa, J. W. (2021). Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield. Journal of Renewable Energy, 2021(1), 1–8. https://doi.org/10.1155/2021/9221168

Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308–313. https://doi.org/10.1016/j.ifset.2008.12.004

Pourmortazavi, S. M., & Hajimirsadeghi, S. S. (2007). Supercritical fluid extraction in plant essential and volatile oil analysis. Journal of Chromatography A, 1163(1–2), 2–24. https://doi.org/10.1016/j.chroma.2007.06.021

Punín Crespo, M. O., & Lage Yusty, M. A. (2005). Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere, 59(10), 1407–1413. https://doi.org/10.1016/j.chemosphere.2004.12.025

Reyes-Garcés, N., Gionfriddo, E., Gómez-Ríos, G. A., Alam, M. N., Boyacı, E., Bojko, B., Singh, V., Grandy, J., & Pawliszyn, J. (2018). Advances in Solid Phase Microextraction and Perspective on Future Directions. Analytical Chemistry, 90(1), 302–360. https://doi.org/10.1021/acs.analchem.7b04502

Rizkiyah, D. N., Putra, N. R., Idham, Z., Aziz, A. H. A., Che Yunus, M. A., Veza, I., Irianto, Chinedu Mamah, S., & Qomariyah, L. (2023). Recovery of Anthocyanins from Hibiscus sabdariffa L. Using a Combination of Supercritical Carbon Dioxide Extraction and Subcritical Water Extraction. Processes, 11(3), 1–20. https://doi.org/10.3390/pr11030751

Rodríguez De Luna, S. L., Ramírez-Garza, R. E., & Serna Saldívar, S. O. (2020). Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. The Scientific World Journal, 2020(1), 1–38. https://doi.org/10.1155/2020/6792069

Schenker, S., Handschin, S., Frey, B., Perren, R., & Escher, F. (2000). Pore Structure of Coffee Beans Affected by Roasting Conditions. Journal of Food Science, 65(3), 452–457. https://doi.org/10.1111/j.1365-2621.2000.tb16026.x

Shi, L., Zhao, W., Yang, Z., Subbiah, V., & Suleria, H. A. R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112–81129. https://doi.org/10.1007/s11356-022-23337-6

Sodeifian, G., & Usefi, M. M. B. (2023). Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. ChemBioEng Reviews, 10(2), 133–166. https://doi.org/10.1002/cben.202200020

Sovová, H., Nobre, B., & Palavra, A. (2016). Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption. Materials, 9(6), 1–19. https://doi.org/10.3390/ma9060423

Subramaniam, B. (2017). Sustainable Processes With Supercritical Fluids. In Encyclopedia of Sustainable Technologies (pp. 653–662). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10252-0

Sun, M.-F., Jiang, C.-L., Kong, Y.-S., Luo, J.-L., Yin, P., & Guo, G.-Y. (2022). Recent Advances in Analytical Methods for Determination of Polyphenols in Tea: A Comprehensive Review. Foods, 11(10), 14–25. https://doi.org/10.3390/foods11101425

Wang, L., Santos, E., Schenk, D., & Rabago-Smith, M. (2014). Kinetics and Mechanistic Studies on the Reaction between Cytochrome c and Tea Catechins. Antioxidants, 3(3), 559–568. https://doi.org/10.3390/antiox3030559

Yaneva, Z., & Ivanova, D. (2020). Catechins within the Biopolymer Matrix—Design Concepts and Bioactivity Prospects. Antioxidants, 9(12), 11–80. https://doi.org/10.3390/antiox9121180

Yeop, A., Sandanasam, J., Pan, S. F., Abdulla, S., Yusoff, M. M., & Gimbun, J. (2017). The effect of particle size and solvent type on the gallic acid yield obtained from Labisia pumila by ultrasonic extraction. MATEC Web of Conferences, 111(2), 1–5. https://doi.org/10.1051/matecconf/201711102008

Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K., Kang, K. W., Choi, Y. J., & Hwang, D. H. (2006). Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (−)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochemical Pharmacology, 72(7), 850–859. https://doi.org/10.1016/j.bcp.2006.06.021

Zeppetzauer, F., Süss, R., Nadányi, R., Putz, R. F., Lisý, A., Paulik, C., Šurina, I., Strižincová, P., Huemer, K., & Kamm, B. (2023). Environmentally Friendly Extraction from Picea Abies Bark as an Approach to Accessing Valuable Antioxidants in Biorefineries. Processes, 11(7), 21–45. https://doi.org/10.3390/pr11072145

Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(1), 1–26. https://doi.org/10.1186/s13020-018-0177-x

Zygler, A., Słomińska, M., & Namieśnik, J. (2012). Soxhlet extraction and new developments such as soxtec. Elsevier.

Downloads

Published

2024-08-15

How to Cite

Qing, C. X., Hean, C. G., & Hadzir, N. H. N. (2024). Effects of Particle Sizes on Total Catching Content and Antioxidant Activity of Musa Paradisiacal Inflorescence using Supercritical Carbon Dioxide (SFE-CO2) Extraction. International Journal of Global Optimization and Its Application, 3(1), 37–52. https://doi.org/10.56225/ijgoia.v3i1.346

Issue

Section

Articles