Remodeling the Traditional Fashion Industry in the Era of Industry 4.0

Authors

  • Guo Hui Department of Contemporary Metal Design, College of Creative Arts, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Rose Dahlina Rusli Department of Contemporary Metal Design, College of Creative Arts, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Asliza bt Aris Department of Fashion Design, College of Creative Arts, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.56225/ijgoia.v2i3.259

Keywords:

Industry 4.0, Traditional industry practices, Advanced technologies

Abstract

This study examines the influence of Industry 4.0 on the global garment design business and investigates methods for transforming conventional industrial procedures. The report utilizes the opinions of experts, academics, and industry professionals to identify obstacles in the traditional clothing sector. It suggests ways for businesses to use innovative technology and gain a competitive advantage. The method includes a complete literature review of relevant studies over the past 20 years, focusing on how new technologies related to Industry 4.0 are used in the garment industry. The Internet of Things (IoT), artificial intelligence (AI), big data analytics, and cloud computing are included. The report also looks at what is being done to help the garment industry deal with problems as it moves to Industry 4.0. The results show that Industry 4.0 technologies have the potential to improve production efficiency, lower costs, make customers happier, boost sales, update employees' skill sets, and make the company more competitive. The study makes several recommendations for apparel companies to modernize their operations, such as leveraging digitalization to facilitate rapid response in the supply chain, utilizing personalization and innovative design to enhance products, and meeting shifting consumer demands through customization.

References

A I Intelligent Automation Network. (2018). AI 2020: The global state of intelligent enterprise.

Anitsal, I., & Schumann, D. W. (2007). Toward a Conceptualization of Customer Productivity: The Customer’s Perspective on Transforming Customer Labor into Customer Outcomes Using Technology-Based Self-Service Options. Journal of Marketing Theory and Practice, 15(4), 349–363. https://doi.org/10.2753/MTP1069-6679150405

Anupa, M. (2021). Role of human resources information system (hris) in accelerating organizational effectiveness–it companies perspective. International Journal of Management and Humanities (IJMH), 5(6), 22–25.

Ballantine, P. W., & Fortin, D. R. (2009). The effects of interactivity and product information on consumers’ emotional responses to an online retail setting. International Journal of Internet Marketing and Advertising, 5(4), 260. https://doi.org/10.1504/IJIMA.2009.027810

Bavykina, A., Kolobov, N., Khan, I. S., Bau, J. A., Ramirez, A., & Gascon, J. (2020). Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 120(16), 8468–8535. https://doi.org/10.1021/acs.chemrev.9b00685

Benigno, P., & Nisticò, S. (2020). Non-Neutrality of Open-Market Operations. American Economic Journal: Macroeconomics, 12(3), 175–226. https://doi.org/10.1257/mac.20180030

Berman, S. J. (2012). Digital transformation: opportunities to create new business models. Strategy & Leadership, 40(2), 16–24. https://doi.org/10.1108/10878571211209314

Bertola, P., & Teunissen, J. (2018). Fashion 4.0. Innovating fashion industry through digital transformation. Research Journal of Textile and Apparel, 22(4), 352–369. https://doi.org/10.1108/RJTA-03-2018-0023

Bheda, R., Narag, A. S., & Singla, M. L. (2003). Apparel manufacturing: a strategy for productivity improvement. Journal of Fashion Marketing and Management: An International Journal, 7(1), 12–22. https://doi.org/10.1108/13612020310464331

Braglia, M., Marrazzini, L., Padellini, L., & Rinaldi, R. (2021). Managerial and Industry 4.0 solutions for fashion supply chains. Journal of Fashion Marketing and Management: An International Journal, 25(1), 184–201. https://doi.org/10.1108/JFMM-12-2019-0285

Chang, C.-J., Yu, L., & Jin, P. (2016). A mega-trend-diffusion grey forecasting model for short-term manufacturing demand. Journal of the Operational Research Society, 67(12), 1439–1445. https://doi.org/10.1057/jors.2016.31

Chaomei Chen, & Paul, R. J. (2001). Visualizing a knowledge domain’s intellectual structure. Computer, 34(3), 65–71. https://doi.org/10.1109/2.910895

Chod, J., & Lyandres, E. (2021). A Theory of ICOs: Diversification, Agency, and Information Asymmetry. Management Science, 67(10), 5969–5989. https://doi.org/10.1287/mnsc.2020.3754

Christopher, M., Lowson, R., & Peck, H. (2004). Creating agile supply chains in the fashion industry. International Journal of Retail & Distribution Management, 32(8), 367–376. https://doi.org/10.1108/09590550410546188

Colvard, N. B., Watson, C. E., & Park, H. (2018). The impact of open educational resources on various student success metrics. International Journal of Teaching and Learning in Higher Education, 30(2), 262–276.

Constantiou, I., Eaton, B., & Tuunainen, V. K. (2016). The Evolution of a Sharing Platform into a Sustainable Business. 2016 49th Hawaii International Conference on System Sciences (HICSS), 1297–1306. https://doi.org/10.1109/HICSS.2016.164

Cook, A. V, Kusumoto, L., Ohri, L., Reynolds, C., & Schwertzel, E. (2020). Augmented shopping: The quiet revolution. In Deloitte Insights (pp. 1–16).

Dacko, S. G. (2017). Enabling smart retail settings via mobile augmented reality shopping apps. Technological Forecasting and Social Change, 124(1), 243–256. https://doi.org/10.1016/j.techfore.2016.09.032

Dart, M., & Lewis, R. (2017). Retail’s Seismic Shift: How to Shift Faster, Respond Better, and Win Customer Loyalty. St. Martin’s Press.

Demary, V. (2015). Competition in the sharing economy. IW policy paper.

Dholakia, U. M., Kahn, B. E., Reeves, R., Rindfleisch, A., Stewart, D., & Taylor, E. (2010). Consumer Behavior in a Multichannel, Multimedia Retailing Environment. Journal of Interactive Marketing, 24(2), 86–95. https://doi.org/10.1016/j.intmar.2010.02.005

Diamond, J., Diamond, E., & Litt, S. (2015). Fashion retailing: a multi-channel approach. Bloomsbury Publishing USA.

Ferreira, P., Teixeira, J. G., & Teixeira, L. F. (2020). Understanding the Impact of Artificial Intelligence on Services. In Education (Vol. 2030, pp. 202–213). https://doi.org/10.1007/978-3-030-38724-2_15

Gatti, E., & Richter, C. (2019). „Cashless Society“ – Die Zukunft des Bezahlens. In Digitales China (pp. 31–38). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-18692-0_4

Geissinger, A., Laurell, C., Öberg, C., & Sandström, C. (2019). How sustainable is the sharing economy? On the sustainability connotations of sharing economy platforms. Journal of Cleaner Production, 206(1), 419–429. https://doi.org/10.1016/j.jclepro.2018.09.196

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910–936. https://doi.org/10.1108/JMTM-02-2018-0057

Giri, C. (2021). Data-driven AI techniques for fashion and apparel retailing. Université de Lille; Högskolan i Borås (Suède); Soochow University (Suzhou ….

Goryńska-Goldmann, E. (2017). The Dimensions of Enterprise Innovation and Selected Trends on the Food Market. Zeszyty Naukowe Polskiego Towarzystwa Ekonomicznego w Zielonej Górze, 4(6), 36–47.

Goyal, K., & Kumar, S. (2021). Financial literacy: A systematic review and bibliometric analysis. International Journal of Consumer Studies, 45(1), 80–105. https://doi.org/10.1111/ijcs.12605

Grewal, D., Hulland, J., Kopalle, P. K., & Karahanna, E. (2020). The future of technology and marketing: a multidisciplinary perspective. Journal of the Academy of Marketing Science, 48(1), 1–8. https://doi.org/10.1007/s11747-019-00711-4

Grewal, D., Noble, S. M., Roggeveen, A. L., & Nordfalt, J. (2020). The future of in-store technology. Journal of the Academy of Marketing Science, 48(1), 96–113. https://doi.org/10.1007/s11747-019-00697-z

Grönroos, C., & Ojasalo, K. (2004). Service productivity. Journal of Business Research, 57(4), 414–423. https://doi.org/10.1016/S0148-2963(02)00275-8

Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77(10), 1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

Illanes, P., Lund, S., Mourshed, M., Rutherford, S., & Tyreman, M. (2018). Retraining and reskilling workers in the age of automation. McKinsey Global Institute, 8(1), 1–8.

Jin, B. E., & Shin, D. C. (2020). Changing the game to compete: Innovations in the fashion retail industry from the disruptive business model. Business Horizons, 63(3), 301–311. https://doi.org/10.1016/j.bushor.2020.01.004

Jin, B. E., & Shin, D. C. (2021). The power of 4th industrial revolution in the fashion industry: what, why, and how has the industry changed? Fashion and Textiles, 8(1), 1–25. https://doi.org/10.1186/s40691-021-00259-4

Jin, T., Lee, T. E., & Kim, D. (2023). Value of lost load estimation for the South Korea’s manufacturing sector—finding the gap between the supply and demand side. Renewable and Sustainable Energy Reviews, 187(1), 113–753. https://doi.org/10.1016/j.rser.2023.113753

Johnson, P. C., Laurell, C., Ots, M., & Sandström, C. (2022). Digital innovation and the effects of artificial intelligence on firms’ research and development – Automation or augmentation, exploration or exploitation? Technological Forecasting and Social Change, 179, 121636. https://doi.org/10.1016/j.techfore.2022.121636

Johnston, R., & Jones, P. (2004). Service productivity. International Journal of Productivity and Performance Management, 53(3), 201–213. https://doi.org/10.1108/17410400410523756

Junck, R. D., Klein, B. A., Kumaki, A., Kumayama, K. D., Kwok, S., Levi, S. D., Talbot, J. S., Vermynck, E.-C., & Zhang, S. (2021). China’s New Data Security and Personal Information Protection Laws: What They Mean for Multinational Companies. In Skadden, Arps, Slate, Meagher & Flom LLP and Affiliates.

Koehler, J. (2018). Business Process Innovation with Artificial Intelligence: Levering Benefits and Controlling Operational Risks. European Business & Management, 4(2), 55–66. https://doi.org/10.11648/j.ebm.20180402.12

Koustoumpardis, P. N., & Aspragathos, N. A. (2014). Intelligent hierarchical robot control for sewing fabrics. Robotics and Computer-Integrated Manufacturing, 30(1), 34–46. https://doi.org/10.1016/j.rcim.2013.08.001

Lai, P. C., & Liew, E. J. Y. (2021). Towards a Cashless Society: The Effects of Perceived Convenience and Security on Gamified Mobile Payment Platform Adoption. Australasian Journal of Information Systems, 25(10), 1–25. https://doi.org/10.3127/ajis.v25i0.2809

Luce, L. (2019). Artificial Intelligence for Fashion. Apress. https://doi.org/10.1007/978-1-4842-3931-5

Majeed, A. A., & Rupasinghe, T. D. (2017). Internet of things (IoT) embedded future supply chains for industry 4.0: An assessment from an ERP-based fashion apparel and footwear industry. International Journal of Supply Chain Management, 6(1), 25–40.

Michelini, R. C., & Razzoli, R. P. (2004). Product-service eco-design: Knowledge-based infrastructures. Journal of Cleaner Production, 12(4), 415–428. https://doi.org/10.1016/S0959-6526(03)00036-2

Müller, J. M., Kiel, D., & Voigt, K.-I. (2018). What Drives the Implementation of Industry 4.0? The Role of Opportunities and Challenges in the Context of Sustainability. Sustainability, 10(1), 2–47. https://doi.org/10.3390/su10010247

Ng, T. C., Lau, S. Y., Ghobakhloo, M., Fathi, M., & Liang, M. S. (2022). The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review. Sustainability, 14(7), 27–43. https://doi.org/10.3390/su14074327

Nishimura, K. (2019). Shopping for a dream wedding gown Is as easy as AI. In Sourcing Journal. www. sourcingjournal. com.

Niu, C. (2021). The Brand Internationalization of Chinese Sportswear Companies: A Case Study of Anta and Li-Ning. 7th International Conference on Humanities and Social Science Research (ICHSSR 2021), 1110–1114. https://doi.org/10.2991/assehr.k.210519.220

O’Hear, A. (2012). Education, Society and Human Nature (RLE Edu K). Routledge. https://doi.org/10.4324/9780203137949

O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-Air Deep Learning Based Radio Signal Classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179. https://doi.org/10.1109/JSTSP.2018.2797022

Paul, M. J., & Meyer, J. L. (2001). Streams in the Urban Landscape. In Urban Ecology (Vol. 32, Issue 1, pp. 207–231). Springer US. https://doi.org/10.1007/978-0-387-73412-5_12

Pawar, V. M., Law, J., & Maple, C. (2016). Manufacturing Robotics: The Next Robotic Industrial Revolution. UK-RAS Network.

Payne, T., & Peters, M. J. (2004). What Is the Right Supply Chain For Your Products? The International Journal of Logistics Management, 15(2), 77–92. https://doi.org/10.1108/09574090410700310

Pupillo, M. (2021). Artificial intelligence in the fashion industry. Research Features, 25(134), 59–64. https://doi.org/10.26904/RF-134-162165

Robey, A., Pappas, G. J., & Hassani, H. (2021). Model-based domain generalization. Advances in Neural Information Processing Systems, 34(24), 20210–20229.

Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. International Journal of Production Research, 57(7), 2117–2135. https://doi.org/10.1080/00207543.2018.1533261

Senanayake, M. M., & Little, T. J. (2010). Mass customization: points and extent of apparel customization. Journal of Fashion Marketing and Management: An International Journal, 14(2), 282–299. https://doi.org/10.1108/13612021011046110

Shah, M., Patnaik, S., Patel, B., Ram, P., Garg, L., Agarwal, M., Agrawal, S., Arora, S., Patel, N., Wald, J., & Jorde, U. P. (2018). Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clinical Research in Cardiology, 107(4), 287–303. https://doi.org/10.1007/s00392-017-1182-2

Shet, S. V, & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0 – Implications for social sustainability. Technological Forecasting and Social Change, 173(12), 80–121. https://doi.org/10.1016/j.techfore.2021.121080

Shim, S., Eastlick, M. A., Lotz, S. L., & Warrington, P. (2001). An online prepurchase intentions model. Journal of Retailing, 77(3), 397–416. https://doi.org/10.1016/S0022-4359(01)00051-3

Silvestri, B. (2020). The future of fashion: How the quest for digitization and the use of artificial intelligence and extended reality will reshape the fashion industry after COVID-19. ZoneModa Journal, 10(2), 61–73.

Singh, M., Bhandari, D., & Goyal, K. (2021). A review of the mechanical performance of nanoparticles reinforced aluminium matrix nanocomposites. Materials Today: Proceedings, 46(9), 3198–3204. https://doi.org/10.1016/j.matpr.2020.11.191

Sull, D., & Turconi, S. (2008). Fast fashion lessons. Business Strategy Review, 19(2), 4–11. https://doi.org/10.1111/j.1467-8616.2008.00527.x

Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and Smart Manufacturing – A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1), 4–16. https://doi.org/10.20965/ijat.2017.p0004

Thomassey, S., & Zeng, X. (2018). Erratum to: Artificial Intelligence for Fashion Industry in the Big Data Era. In Artificial Intelligence for Fashion Industry in the Big Data Era (pp. E1–E1). Springer. https://doi.org/10.1007/978-981-13-0080-6_15

Tian, L., & Jiang, B. (2018). Effects of Consumer‐to‐Consumer Product Sharing on Distribution Channel. Production and Operations Management, 27(2), 350–367. https://doi.org/10.1111/poms.12794

Tomé, P. (2014). A Proposal of Architecture for a Social Media Platform for Promoting Events. Global Interdisciplinary Business-Economics Advancement Conference, 632–666.

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia Manufacturing, 20, 233–238. https://doi.org/10.1016/j.promfg.2018.02.034

Varukolu, V., & Park‐Poaps, H. (2009). Technology adoption by apparel manufacturers in Tirupur town, India. Journal of Fashion Marketing and Management: An International Journal, 13(2), 201–214. https://doi.org/10.1108/13612020910957716

Wang, C. C. L., & Tang, K. (2004). Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. The Visual Computer, 20(8–9), 521–539. https://doi.org/10.1007/s00371-004-0256-0

Wang, L.-C. (2008). Enhancing construction quality inspection and management using RFID technology. Automation in Construction, 17(4), 467–479. https://doi.org/10.1016/j.autcon.2007.08.005

Yanni, X. U. (2020). Optimization of the cutting-related processes for consumer-centered garment manufacturing (pp. 1–202). Université de Lille, France.

Zhang, Y., Qu, T., Ho, O. K., & Huang, G. Q. (2011). Agent-based Smart Gateway for RFID-enabled real-time wireless manufacturing. International Journal of Production Research, 49(5), 1337–1352. https://doi.org/10.1080/00207543.2010.518743

Zhou, M., & Yuan, Z. (2017). Textile Companies Go High Tech in Arkansas. In USA (Available at China Daily. http://usa. chinadaily. com. cn/world/2017-07/25/content_30244657. htm, accessed 12 June 2017).

Zhu, G., Houck, H. A., Spiegel, C. A., Selhuber‐Unkel, C., Hou, Y., & Blasco, E. (2023). Introducing Dynamic Bonds in Light‐based 3D Printing. Advanced Functional Materials, 23(4), 230–456. https://doi.org/10.1002/adfm.202300456

Downloads

Published

2023-09-30

How to Cite

Hui, G., Rusli, R. D., & Aris, A. bt. (2023). Remodeling the Traditional Fashion Industry in the Era of Industry 4.0. International Journal of Global Optimization and Its Application, 2(3), 165–178. https://doi.org/10.56225/ijgoia.v2i3.259
Abstract viewed = 138 times